Math 5C Test 3 v2 - Fall 2022

Follow Instructions given on Canvas.

(1) Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\sqrt{x}} \int_{0}^{\sin x} \sqrt{x} d z d y d x$
(7points)
(2) Evaluate $\iint_{D} y d A$ where D is the region bounded by $\mathrm{x}=\mathrm{y}^{2}$ and $\mathrm{y}=2-\mathrm{x}$. (10 points)

(3) Evaluate $\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3}+4} d y d x$ You may want to reverse the order of integration. (11 points)
(4) Evaluate $\int_{C} x y^{2} d s$ where C is the line segment from $(-3,0,1)$ to $(4,2,5)$. (11 points)
(5) SET UP BUT DO NOT EVALUATE: integrals as specified to find the volume enclosed above the cone $z=\sqrt{\frac{1}{3}\left(x^{2}+y^{2}\right)}$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$ in the first octant. In each part, sketch the necessary projection
(24points)
a) Sketch the solid

b) Triple integral - cylindrical coordinates.

c) Triple integral - spherical coordinates.

d) Triple Integral - order $d x d z d y$

e) Double integral- order $d y d x$
(6) Evaluate $\iint_{S} x z d S$ where S is the portion plane $2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=6$ in the first octant.
(7) Check all the boxes that apply. A function of three variables might appear in which of the following types of integrals?
(6 points)

	Single Integral
	Double Integral
	Triple Integral
	Line Integral
	Surface Integral.

(8) SET UP ONLY :Find the volume of the solid bounded by the surface $z=x^{2}$ and the planes $y=0, y=1$, and $z=9$ according to the following directions. (sketch the solid). In each part, sketch the necessary projection
(20 points)

a) Triple integral - order $d z d x d y$

b) Triple integral - order $d y d x d z$

c) Triple integral - order $d x d y d z$

